login
A017737
Binomial coefficients C(n,73).
2
1, 74, 2775, 70300, 1353275, 21111090, 277962685, 3176716400, 32164253550, 293052087900, 2432332329570, 18574174153080, 131567066917650, 870366750378300, 5408707663065150, 31731084956648880
OFFSET
73,2
LINKS
FORMULA
From G. C. Greubel, Nov 09 2018: (Start)
G.f.: x^73/(1-x)^74.
E.g.f.: x^73*exp(x)/73!. (End)
From Amiram Eldar, Dec 18 2020: (Start)
Sum_{n>=73} 1/a(n) = 73/72.
Sum_{n>=73} (-1)^(n+1)/a(n) = A001787(73)*log(2) - A242091(73)/72! = 344732753249484100599808*log(2) - 6719341123837706799694333933410296397788866483772797 / 28120217838385627632757735656 = 0.9868333169... (End)
MATHEMATICA
Array[Binomial[#, 73] &, 16, 73] (* Michael De Vlieger, Jul 06 2018 *)
PROG
(Sage) [binomial(n, 73) for n in range(73, 89)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=73, 90, print1(binomial(n, 73), ", ")) \\ G. C. Greubel, Nov 09 2018
(Magma) [Binomial(n, 73): n in [73..90]]; // G. C. Greubel, Nov 09 2018
CROSSREFS
Sequence in context: A277941 A017790 A035732 * A358796 A034203 A264497
KEYWORD
nonn
STATUS
approved