login
Binomial coefficients C(n,72).
2

%I #24 Sep 08 2022 08:44:43

%S 1,73,2701,67525,1282975,19757815,256851595,2898753715,28987537150,

%T 260887834350,2139280241670,16141841823510,112992892764570,

%U 738799683460650,4538340912686850,26322377293583730

%N Binomial coefficients C(n,72).

%H Michael De Vlieger, <a href="/A017736/b017736.txt">Table of n, a(n) for n = 72..10000</a>

%F From _G. C. Greubel_, Nov 09 2018: (Start)

%F G.f.: x^72/(1-x)^73.

%F E.g.f.: x^72*exp(x)/72!. (End)

%F From _Amiram Eldar_, Dec 17 2020: (Start)

%F Sum_{n>=72} 1/a(n) = 72/71.

%F Sum_{n>=72} (-1)^n/a(n) = A001787(72)*log(2) - A242091(72)/71! = 170005193383307227693056*log(2) - 46022884409847306847221270018040252900492883896208 / 390558581088689272677190773 = 0.9866575261... (End)

%t Binomial[Range[72,90],72] (* _Harvey P. Dale_, May 24 2015 *)

%o (Sage) [binomial(n, 72) for n in range(72,88)] # _Zerinvary Lajos_, May 23 2009

%o (PARI) for(n=72, 90, print1(binomial(n,72), ", ")) \\ _G. C. Greubel_, Nov 09 2018

%o (Magma) [Binomial(n,72): n in [72..90]]; // _G. C. Greubel_, Nov 09 2018

%Y Cf. A001787, A242091.

%K nonn

%O 72,2

%A _N. J. A. Sloane_