login
A017735
Binomial coefficients C(n,71).
2
1, 72, 2628, 64824, 1215450, 18474840, 237093780, 2641902120, 26088783435, 231900297200, 1878392407320, 14002561581840, 96851050941060, 625806790696080, 3799541229226200, 21784036380896880
OFFSET
71,2
LINKS
FORMULA
From G. C. Greubel, Nov 09 2018: (Start)
G.f.: x^71/(1-x)^72.
E.g.f.: x^71*exp(x)/71!. (End)
From Amiram Eldar, Dec 17 2020: (Start)
Sum_{n>=71} 1/a(n) = 71/70.
Sum_{n>=71} (-1)^(n+1)/a(n) = A001787(71)*log(2) - A242091(71)/70! = 83822005070936202543104*log(2) - 5752860551230913355902609244829259806879158448759 / 99014851543611364904076534 = 0.9864769747... (End)
MATHEMATICA
Binomial[Range[71, 90], 71] (* Harvey P. Dale, Jul 20 2011 *)
PROG
(Sage) [binomial(n, 71) for n in range(71, 87)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=71, 90, print1(binomial(n, 71), ", ")) \\ G. C. Greubel, Nov 09 2018
(Magma) [Binomial(n, 71): n in [71..90]]; // G. C. Greubel, Nov 09 2018
CROSSREFS
Sequence in context: A017788 A035731 A035803 * A141054 A173192 A004366
KEYWORD
nonn
STATUS
approved