login
A017727
Binomial coefficients C(n,63).
2
1, 64, 2080, 45760, 766480, 10424128, 119877472, 1198774720, 10639125640, 85113005120, 621324937376, 4179822305984, 26123889412400, 152724276564800, 839983521106400, 4367914309753280, 21566576904406820
OFFSET
63,2
LINKS
FORMULA
From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^63/(1-x)^64.
E.g.f.: x^63*exp(x)/63!. (End)
From Amiram Eldar, Dec 17 2020: (Start)
Sum_{n>=63} 1/a(n) = 63/62.
Sum_{n>=63} (-1)^(n+1)/a(n) = A001787(63)*log(2) - A242091(63)/62! = 290536219160925437952*log(2) - 23620045751782378911483133238094693227021389 / 117288381359406970983270 = 0.9848351324... (End)
MATHEMATICA
With[{x = 63}, Binomial[Range[x, x + 16], x]] (* Michael De Vlieger, Jan 31 2018 *)
PROG
(Sage) [binomial(n, 63) for n in range(63, 80)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=63, 80, print1(binomial(n, 63), ", ")) \\ G. C. Greubel, Nov 03 2018
(Magma) [Binomial(n, 63): n in [63..80]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
Sequence in context: A035727 A035801 A239739 * A089458 A283280 A082559
KEYWORD
nonn
STATUS
approved