login
Binomial coefficients C(n,58).
2

%I #27 Sep 08 2022 08:44:43

%S 1,59,1770,35990,557845,7028847,74974368,696190560,5743572120,

%T 42757703560,290752384208,1823810410032,10638894058520,58104729088840,

%U 298824321028320,1454278362337824,6726037425812436

%N Binomial coefficients C(n,58).

%H Michael De Vlieger, <a href="/A017722/b017722.txt">Table of n, a(n) for n = 58..10000</a>

%F From _G. C. Greubel_, Nov 03 2018: (Start)

%F G.f.: x^58/(1-x)^59.

%F E.g.f.: x^58*exp(x)/58!. (End)

%F From _Amiram Eldar_, Dec 16 2020: (Start)

%F Sum_{n>=58} 1/a(n) = 58/57.

%F Sum_{n>=58} (-1)^n/a(n) = A001787(58)*log(2) - A242091(58)/57! = 8358680908399640576*log(2) - 82036835759177476061366913847977038077 / 14159427476296364262 = 0.9835896961... (End)

%t With[{x = 58}, Binomial[Range[x, x + 16], x]] (* _Michael De Vlieger_, Jan 31 2018 *)

%o (Sage) [binomial(n, 58) for n in range(58,75)] # _Zerinvary Lajos_, May 23 2009

%o (Magma) [Binomial(n, 58): n in [58..100]]; // _Vincenzo Librandi_, Feb 01 2018

%o (PARI) for(n=58, 80, print1(binomial(n,58), ", ")) \\ _G. C. Greubel_, Nov 03 2018

%Y Cf. A001787, A242091.

%K nonn

%O 58,2

%A _N. J. A. Sloane_