login
Binomial coefficients C(n,56).
3

%I #24 Sep 08 2022 08:44:43

%S 1,57,1653,32509,487635,5949147,61474519,553270671,4426165368,

%T 31966749880,210980549208,1285063345176,7282025622664,38650751381832,

%U 193253756909160,914734449370024,4116305022165108,17675898036356052

%N Binomial coefficients C(n,56).

%H G. C. Greubel, <a href="/A017720/b017720.txt">Table of n, a(n) for n = 56..10000</a>

%F From _G. C. Greubel_, Nov 03 2018: (Start)

%F G.f.: x^56/(1-x)^57.

%F E.g.f.: x^56*exp(x)/56!. (End)

%F From _Amiram Eldar_, Dec 16 2020: (Start)

%F Sum_{n>=56} 1/a(n) = 56/55.

%F Sum_{n>=56} (-1)^n/a(n) = A001787(56)*log(2) - A242091(56)/55! = 2017612633061982208*log(2) - 41018417879588738008814416366926778496 / 29330242629471040257 = 0.9830322375... (End)

%t Table[Binomial[n,56],{n,56,80}] (* _Vladimir Joseph Stephan Orlovsky_, May 16 2011 *)

%o (Sage) [binomial(n, 56) for n in range(56,74)] # _Zerinvary Lajos_, May 23 2009

%o (PARI) for(n=56, 80, print1(binomial(n,56), ", ")) \\ _G. C. Greubel_, Nov 03 2018

%o (Magma) [Binomial(n,56): n in [56..80]]; // _G. C. Greubel_, Nov 03 2018

%Y Cf. A017717, A017719, A001787, A242091.

%K nonn

%O 56,2

%A _N. J. A. Sloane_