login
A017719
Binomial coefficients C(n,55).
4
1, 56, 1596, 30856, 455126, 5461512, 55525372, 491796152, 3872894697, 27540584512, 179013799328, 1074082795968, 5996962277488, 31368725759168, 154603005527328, 721480692460864, 3201570572795084, 13559593014190944
OFFSET
55,2
LINKS
FORMULA
From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^55/(1-x)^56.
E.g.f.: x^55*exp(x)/55!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=55} 1/a(n) = 55/54.
Sum_{n>=55} (-1)^(n+1)/a(n) = A001787(55)*log(2) - A242091(55)/54! = 990791918021509120*log(2) - 25636511174742961236844310374211301851 / 37329399710235869418 = 0.9827390452... (End)
MATHEMATICA
Table[Binomial[n, 55], {n, 55, 80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
PROG
(Sage) [binomial(n, 55) for n in range(55, 73)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=55, 80, print1(binomial(n, 55), ", ")) \\ G. C. Greubel, Nov 03 2018
(Magma) [Binomial(n, 55): n in [55..80]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
Sequence in context: A035723 A035799 A278362 * A234761 A290607 A258465
KEYWORD
nonn
STATUS
approved