%I #12 Sep 08 2022 08:44:43
%S 1,131072,129140163,17179869184,762939453125,1410554953728,
%T 232630513987207,2251799813685248,16677181699666569,50000000000000000,
%U 505447028499293771,554652776685109248,8650415919381337933
%N Denominator of sum of -17th powers of divisors of n.
%C Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
%H G. C. Greubel, <a href="/A017698/b017698.txt">Table of n, a(n) for n = 1..10000</a>
%t Table[Denominator[DivisorSigma[17, n]/n^17], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *)
%o (PARI) vector(20, n, denominator(sigma(n, 17)/n^17)) \\ _G. C. Greubel_, Nov 05 2018
%o (Magma) [Denominator(DivisorSigma(17,n)/n^17): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018
%Y Cf. A017697.
%K nonn,frac
%O 1,2
%A _N. J. A. Sloane_