login
A017696
Denominator of sum of -16th powers of divisors of n.
3
1, 65536, 43046721, 4294967296, 152587890625, 1410554953728, 33232930569601, 281474976710656, 1853020188851841, 5000000000000000, 45949729863572161, 30814043149172736, 665416609183179841
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
MATHEMATICA
Table[Denominator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
PROG
(PARI) vector(20, n, denominator(sigma(n, 16)/n^16)) \\ G. C. Greubel, Nov 05 2018
(Magma) [Denominator(DivisorSigma(16, n)/n^16): n in [1..20]]; // G. C. Greubel, Nov 05 2018
CROSSREFS
Cf. A017695.
Sequence in context: A016808 A175924 A016904 * A211199 A010804 A276108
KEYWORD
nonn,frac
STATUS
approved