This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A017688 Denominator of sum of -12th powers of divisors of n. 3
 1, 4096, 531441, 16777216, 244140625, 1088391168, 13841287201, 68719476736, 282429536481, 500000000000, 3138428376721, 1486016741376, 23298085122481, 28346956187648, 129746337890625, 281474976710656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA Array[Denominator[Total[Divisors[#]^-12]]&, 20] (* Harvey P. Dale, Dec 06 2012 *) Table[Denominator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *) PROG (PARI) vector(20, n, denominator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018 (MAGMA) [Denominator(DivisorSigma(12, n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018 CROSSREFS Cf. A017687. Sequence in context: A195660 A321836 A016902 * A008456 A030631 A321820 Adjacent sequences:  A017685 A017686 A017687 * A017689 A017690 A017691 KEYWORD nonn,frac AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)