%I #16 Sep 08 2022 08:44:43
%S 1,2048,177147,4194304,48828125,30233088,1977326743,8589934592,
%T 31381059609,50000000000,285311670611,185752092672,1792160394037,
%U 506195646208,2883251953125,17592186044416,34271896307633
%N Denominator of sum of -11th powers of divisors of n.
%C Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
%H Harvey P. Dale, <a href="/A017686/b017686.txt">Table of n, a(n) for n = 1..1000</a>
%t Denominator[DivisorSigma[-11,Range[20]]] (* _Harvey P. Dale_, Dec 18 2012 *)
%o (PARI) vector(20, n, denominator(sigma(n, 11)/n^11)) \\ _G. C. Greubel_, Nov 06 2018
%o (Magma) [Denominator(DivisorSigma(11,n)/n^11): n in [1..20]]; // _G. C. Greubel_, Nov 06 2018
%Y Cf. A017685.
%K nonn,frac
%O 1,2
%A _N. J. A. Sloane_