login
A017534
a(n) = (12*n + 1)^2.
11
1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, 11881, 14641, 17689, 21025, 24649, 28561, 32761, 37249, 42025, 47089, 52441, 58081, 64009, 70225, 76729, 83521, 90601, 97969, 105625, 113569, 121801
OFFSET
0,2
FORMULA
G.f.: (1 + 166*x + 121*x^2 )/(1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (1 + 168*x + 144*x^2)*exp(x). - G. C. Greubel, Dec 24 2022
MATHEMATICA
CoefficientList[Series[(1+166*x+121*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
LinearRecurrence[{3, -3, 1}, {1, 169, 625}, 30] (* Harvey P. Dale, Feb 27 2023 *)
PROG
(Magma) I:=[1, 169, 625]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
(PARI) a(n)=(12*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
(SageMath) [(12*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), this sequence (m=12), A134934 (m=14).
Cf. A082043.
Sequence in context: A305055 A069645 A294307 * A120904 A038596 A250988
KEYWORD
nonn,easy
STATUS
approved