%I #15 Sep 08 2022 08:44:42
%S 100000,4084101,33554432,147008443,459165024,1160290625,2535525376,
%T 4984209207,9039207968,15386239549,24883200000,38579489651,
%U 57735339232,83841135993,118636749824,164130859375,222620278176,296709280757,389328928768,503756397099
%N a(n) = (11*n + 10)^5.
%H G. C. Greubel, <a href="/A017513/b017513.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _Chai Wah Wu_, May 31 2016: (Start)
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
%F G.f.: (x^5 + 248826*x^4 + 4943366*x^3 + 10549826*x^2 + 3484101*x + 100000)/(x - 1)^6. (End)
%F E.g.f.: (100000 + 3984101*x + 12743115*x^2 + 9749575*x^3 + 2342560*x^4 + 161051*x^5)*exp(x). - _G. C. Greubel_, Jun 01 2016
%p seq((11*n+10)^5, n=0..30); # _G. C. Greubel_, Oct 29 2019
%t (11*Range[30] -1)^5 (* _G. C. Greubel_, Jun 01 2016 *)
%o (Magma) [(11*n+10)^5: n in [0..30]]; // _Vincenzo Librandi_, Jun 01 2016
%o (PARI) vector(31, n, (11*n-1)^5) \\ _G. C. Greubel_, Oct 29 2019
%o (Sage) [(11*n+10)^5 for n in (0..30)] # _G. C. Greubel_, Oct 29 2019
%o (GAP) List([0..30], n-> (11*n+10)^5); # _G. C. Greubel_, Oct 29 2019
%Y Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), this sequence (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_