login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (11*n + 9)^12.
12

%I #17 Sep 08 2022 08:44:42

%S 282429536481,4096000000000000,787662783788549761,

%T 30129469486639681536,491258904256726154641,4722366482869645213696,

%U 31676352024078369140625,163674647745587512938496,693842360995438000295041,2518170116818978404827136

%N a(n) = (11*n + 9)^12.

%H G. C. Greubel, <a href="/A017508/b017508.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).

%F From _G. C. Greubel_, Oct 29 2019: (Start)

%F G.f.: (282429536481 +4092328416025747*x +734436813292395279*x^2 + 20209260522541101077*x^3 +159842244003035759946*x^4 + 463756067839761680478*x^5 +544661828676570185790*x^6 +

%F 262487410539784705770*x^7 +48674358916489218693*x^8 + 2906273242026287199*x^9 +36217472329783811*x^10 +23298085069233*x^11 + 4096*x^12)/(1-x)^13.

%F E.g.f.: (282429536481 + 4095717570463519*x + 389735533109043121*x^2 + 4629794808807415962*x^3 +15643775803972010981*x^4 +21329254236100801848* x^5 +14055885648635908792*x^6 +4951158185239377540*x^7 + 983467446953859582*x^8 +112116203770421565*x^9 +7184433177655591*x^10 + 237949933289574*x^11 +3138428376721*x^12)*exp(x). (End)

%p seq((11*n+9)^12, n=0..0); # _G. C. Greubel_, Oct 28 2019

%t (11*Range[20] -2)^12 (* _G. C. Greubel_, Oct 29 2019 *)

%o (Maxima) makelist((11*n+9)^12, n,0,30); /* _Martin Ettl_, Oct 21 2012 */

%o (PARI) vector(21, n, (11*n-2)^12) \\ _G. C. Greubel_, Oct 29 2019

%o (Magma) [(11*n+9)^12: n in [0..20]]; // _G. C. Greubel_, Oct 29 2019

%o (Sage) [(11*n+9)^12 for n in (0..20)] # _G. C. Greubel_, Oct 29 2019

%o (GAP) List([0..20], n-> (11*n+9)^12); # _G. C. Greubel_, Oct 29 2019

%Y Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), this sequence (m=12).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_