login
A017463
a(n) = (11*n + 6)^3.
12
216, 4913, 21952, 59319, 125000, 226981, 373248, 571787, 830584, 1157625, 1560896, 2048383, 2628072, 3307949, 4096000, 5000211, 6028568, 7189057, 8489664, 9938375, 11543176, 13312053, 15252992, 17373979, 19683000, 22188041, 24897088, 27818127, 30959144
OFFSET
0,1
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=216, a(1)=4913, a(2)=21952, a(3)=59319. - Harvey P. Dale, May 16 2012
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (216 +4049*x +3596*x^2 +125*x^3)/(1-x)^4.
E.g.f.: (216 +4697*x +6171*x^2 +1331*x^3)*exp(x). (End)
MAPLE
seq((11*n+6)^3, n=0..40); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(* From Harvey P. Dale, May 16 2012 : (Start) *)
(11Range[0, 40]+6)^3
LinearRecurrence[{4, -6, 4, -1}, {216, 4913, 21952, 59319}, 40] (* End *)
PROG
(Magma) [(11*n+6)^3: n in [0..40]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(40, n, (11*n-5)^3) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+6)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..40], n-> (11*n+6)^3); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), this sequence (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).
Sequence in context: A282019 A017343 A269190 * A183617 A114060 A128964
KEYWORD
nonn,easy
STATUS
approved