login
A017461
a(n) = 11*n + 6.
19
6, 17, 28, 39, 50, 61, 72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 215, 226, 237, 248, 259, 270, 281, 292, 303, 314, 325, 336, 347, 358, 369, 380, 391, 402, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 523, 534, 545, 556, 567, 578, 589
OFFSET
0,1
FORMULA
a(0)=6, a(1)=17; for n>1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Apr 14 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (6 + 5*x)/(1-x)^2.
E.g.f.: (6 + 11*x)*exp(x). (End)
MAPLE
seq(11*n+6, n=0..60); # G. C. Greubel, Sep 19 2019
MATHEMATICA
Range[6, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {6, 17}, 60] (* or *) NestList[11 + #&, 6, 60] (* Harvey P. Dale, Apr 14 2015 *)
PROG
(Magma) [11*n+6: n in [0..60]]; // Vincenzo Librandi, Sep 03 2011
(PARI) a(n)=11*n+6 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [11*n+6 for n in (0..60)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..60], n-> 11*n+6); # G. C. Greubel, Sep 19 2019
CROSSREFS
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.
Powers of the form (11*n+6)^m: this sequence (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).
Sequence in context: A184549 A166025 A171786 * A061875 A063230 A212461
KEYWORD
nonn,easy
STATUS
approved