login
A017448
a(n) = (11*n + 4)^12.
12
16777216, 129746337890625, 95428956661682176, 6582952005840035281, 149587343098087735296, 1779197418239532716881, 13841287201000000000000, 79766443076872509863361, 367666387654882241806336, 1425760886846178945447841
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (16777216 +129746119786817*x +93742255577726899*x^2 +5352495778795351967*x^3 +71415318201137477061*x^4 +320832301424673327498*x^5 +564873972371695167390*x^6 +409344222142040360670*x^7 +118792245587080463178*x^8 +12267852707472004709*x^9 +338777054867330431*x^10 +1156651444692563*x^11 +13841287201*x^12)/(1-x)^13.
E.g.f.: (16777216 +129746321113409*x +47584732001339071*x^2 +1049509062475313902*x^3 +5159482909556787581*x^4 +9134471516437918728*x^5 +7332895074707269012*x^6 +3022504298573111220*x^7 +683555776881033507*x^8 +86991917430662915*x^9 +6131633113101001*x^10 +220831233052914*x^11 +3138428376721*x^12)*exp(x). (End)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13). - Wesley Ivan Hurt, Mar 18 2023
MAPLE
seq((11*n+4)^12, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11Range[0, 20]+4)^12 (* Harvey P. Dale, Apr 18 2011 *)
PROG
(Magma) [(11*n+4)^12: n in [0..25]]; // Vincenzo Librandi, Apr 19 2011
(PARI) vector(20, n, (11*n-7)^12) \\ G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^12 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^12); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), this sequence (m=12).
Sequence in context: A114967 A017220 A017328 * A017580 A017711 A013972
KEYWORD
nonn,easy
STATUS
approved