login
A017447
a(n) = (11*n + 4)^11.
12
4194304, 8649755859375, 3670344486987776, 177917621779460413, 3116402981210161152, 30155888444737842659, 197732674300000000000, 984770902183611232881, 3996373778857415671808, 13842338707244455781047
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4194304 +8649705527727*x +3566547693499340*x^2 +134444370899578971*x^3 +1221731311784947392*x^4 +3698421546351487230*x^5 +4212702849829094280*x^6 +1829094388304154510*x^7 +277265562864875904*x^8 +11429419348320083*x^9 +64244682158316*x^10 +1977326743*x^11)/(1-x)^12.
E.g.f.: (4194304 +8649751665071*x +1826522489731665*x^2 +27822089596980151*x^3 +101113331749791790*x^4 +135969913003223882*x^5 +83388943309597233*x^6 +25990443483549897*x^7 +4322401071325920*x^8 +382966074233765*x^9 +16833388566049*x^10 +285311670611*x^11)*exp(x). (End)
MAPLE
seq((11*n+4)^11, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11Range[0, 10]+4)^11 (* Harvey P. Dale, Jun 23 2013 *)
PROG
(PARI) vector(20, n, (11*n-7)^11) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^11: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^11 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^11); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), this sequence (m=11), A017448 (m=12).
Sequence in context: A017123 A017219 A017327 * A017579 A017707 A013970
KEYWORD
nonn,easy
STATUS
approved