login
A017437
a(n) = 11*n + 4.
17
4, 15, 26, 37, 48, 59, 70, 81, 92, 103, 114, 125, 136, 147, 158, 169, 180, 191, 202, 213, 224, 235, 246, 257, 268, 279, 290, 301, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 422, 433, 444, 455, 466, 477, 488, 499, 510, 521, 532, 543, 554, 565, 576, 587
OFFSET
0,1
COMMENTS
These numbers do not occur in A000045 (Fibonacci numbers). - Arkadiusz Wesolowski, Jan 08 2012
FORMULA
a(0)=4, a(1)=15, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, May 19 2012
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4 + 7*x)/(1-x)^2.
E.g.f.: (4 + 11*x)*exp(x). (End)
MAPLE
seq(11*n+4, n=0..60); # G. C. Greubel, Sep 18 2019
MATHEMATICA
Range[4, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {4, 15}, 60] (* Harvey P. Dale, May 19 2012 *)
PROG
(Sage) list(range(4, 600, 11)) # Zerinvary Lajos, May 21 2009
(Magma)[11*n+4: n in [0..60]]; // Vincenzo Librandi, Sep 18 2011
(PARI) a(n)=11*n+4 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..60], n-> 11*n+4); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: this sequence (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A171788 A063129 A061873 * A281264 A372237 A366869
KEYWORD
nonn,easy
STATUS
approved