login
A017352
(10*n+6)^12.
1
2176782336, 281474976710656, 95428956661682176, 4738381338321616896, 89762301673555234816, 951166013805414055936, 6831675453247426400256, 37133262473195501387776, 163674647745587512938496, 612709757329767363772416
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From Wesley Ivan Hurt, Oct 28 2014: (Start)
G.f.: 4096*(531441 + 68712568003*x + 22404773377311*x^2 + 859316242027205*x^3 + 8673413722667370*x^4 + 30946876621062078*x^5 + 44108689210889694*x^6 + 25884027384156618*x^7 + 5972410776815445*x^8 + 467792550632655*x^9 + 8736164034131*x^10 + 13841233953*x^11 + 4096*x^12) / (1-x)^13.
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13).
a(n) = (10*n+6)^12 = A008456(A017341(n)). (End)
MAPLE
A017352:=n->(10*n+6)^12: seq(A017352(n), n=0..10); # Wesley Ivan Hurt, Oct 28 2014
MATHEMATICA
(10 Range[0, 10] + 6)^12 (* Wesley Ivan Hurt, Oct 28 2014 *)
CoefficientList[Series[4096 (531441 + 68712568003 x + 22404773377311 x^2 + 859316242027205 x^3 + 8673413722667370 x^4 + 30946876621062078 x^5 + 44108689210889694 x^6 + 25884027384156618 x^7 + 5972410776815445 x^8 + 467792550632655 x^9 + 8736164034131 x^10 + 13841233953 x^11 + 4096 x^12)/(1 - x)^13, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)
PROG
(Magma) [(10*n+6)^12: n in [0..10]]; // Vincenzo Librandi, Aug 03 2011
CROSSREFS
Cf. A008456 (12th Powers), A017341 (10n+6).
Sequence in context: A017064 A017148 A017244 * A017472 A017604 A288080
KEYWORD
nonn,easy
STATUS
approved