%I #65 Sep 03 2023 08:42:16
%S 6,14,22,30,38,46,54,62,70,78,86,94,102,110,118,126,134,142,150,158,
%T 166,174,182,190,198,206,214,222,230,238,246,254,262,270,278,286,294,
%U 302,310,318,326,334,342,350,358,366,374,382,390,398,406,414,422,430
%N a(n) = 8*n+6.
%C First differences of A002943. - _Aaron David Fairbanks_, May 13 2014
%H Vincenzo Librandi, <a href="/A017137/b017137.txt">Table of n, a(n) for n = 0..10000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 2*A004767(n) = A000290(A017245(n)) - A156676(n+1). - _Reinhard Zumkeller_, Jul 13 2010
%F a(n) = 2*a(n-1) - a(n-2). - _Vincenzo Librandi_, Jun 07 2011
%F A089911(3*a(n)) = 4. - _Reinhard Zumkeller_, Jul 05 2013
%F From _Michael Somos_, May 15 2014: (Start)
%F G.f.: (6 + 2*x) / (1 - x)^2.
%F E.g.f.: (6 + 8*x) * exp(x). (End)
%F Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(8*sqrt(2)). - _Amiram Eldar_, Dec 11 2021
%e G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
%p A017137:=n->8*n+6; seq(A017137(n), n=0..50); # _Wesley Ivan Hurt_, May 13 2014
%t Range[6, 1000, 8] (* _Vladimir Joseph Stephan Orlovsky_, May 27 2011 *)
%t 8Range[0,60]+6 (* or *) LinearRecurrence[{2,-1},{6,14},60] (* _Harvey P. Dale_, Nov 14 2021 *)
%o (Magma) [8*n+6: n in [0..60]]; // _Vincenzo Librandi_, Jun 07 2011
%o (Haskell)
%o a017137 = (+ 6) . (* 8) -- _Reinhard Zumkeller_, Jul 05 2013
%o (PARI) a(n) = 8*n+6; \\ _Michel Marcus_, Sep 17 2015
%o (PARI) Vec((6+2*x)/(1-x)^2 + O(x^100)) \\ _Altug Alkan_, Oct 23 2015
%Y Cf. A000290, A002943, A004767, A004770, A008590, A017101, A017113, A017245, A156676.
%Y Cf. A017629, A047595 (complement).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Dec 11 1996