%I #7 Mar 30 2012 18:51:18
%S 0,1,1,1,1,2,2,2,1,3,3,3,3,1,4,5,5,4,4,1,5,8,8,7,5,5,1,6,13,13,11,9,6,
%T 6,1,7,21,21,18,14,11,7,7,1,8,34,34,29,23,17,13,8,8,1,9,55,55,47,37,
%U 28,20,15,9,9,1,10,89,89,76,60,45,33,23,17,10,10,1,11,144,144,123,97,73
%N Table read by antidiagonals of Fibonacci-type sequences.
%F T(n, k) = T(n, k-1)+T(n, k-2) [with T(n, 0) = n and T(n, 1) = 1] = 2*T(n-1, k)-T(n-2, k) = Fib(k)+n*Fib(k-1) = (s^k*(1+2n/s)-t^k*(1+2n/t))/(2^k*sqrt(5)) where s = (1+sqrt(5))/2 and t = (1-sqrt(5))/2 = 1-s.
%F G.f. for n-th row: (n+x-nx)/(1-x-x^2).
%Y Rows are (essentially) A000045, A000045, A000032, A000285, A022095, A022096, A022097, etc. Columns are (essentially) A001477, A000012, A000027, A005408, A016789, A016885, etc. One of the diagonals is A007502.
%Y Antidiagonal sums are in A019274.
%K easy,nonn,tabl
%O 0,6
%A _Henry Bottomley_, Jul 31 2000