login
A017122
a(n) = (8*n + 4)^10.
1
1048576, 61917364224, 10240000000000, 296196766695424, 3656158440062976, 27197360938418176, 144555105949057024, 604661760000000000, 2113922820157210624, 6428888932339941376, 17490122876598091776, 43438845422363213824, 100000000000000000000, 215892499727278669824
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: ( -1048576 - 61905829888*x - 9558966665216*x^2 - 186962048712704*x^3 - 950977987346432*x^4 - 1601272511725568*x^5 - 950977987346432*x^6 - 186962048712704*x^7 - 9558966665216*x^8 - 61905829888*x^9 - 1048576*x^10 ) / ( (x-1)^11 ). - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^10.
a(n) = 2^10*A016834(n) = 2^20*A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/3044058071040. (End)
MATHEMATICA
Table[(8*n + 4)^10, {n, 0, 20}] (* Amiram Eldar, Apr 25 2023 *)
PROG
(Magma) [(8*n+4)^10: n in [0..15] ]; // Vincenzo Librandi, Jul 21 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved