login
a(n) = 7*n + 3.
23

%I #29 Oct 17 2023 05:06:30

%S 3,10,17,24,31,38,45,52,59,66,73,80,87,94,101,108,115,122,129,136,143,

%T 150,157,164,171,178,185,192,199,206,213,220,227,234,241,248,255,262,

%U 269,276,283,290,297,304,311,318,325,332,339,346,353,360,367,374,381

%N a(n) = 7*n + 3.

%H Vincenzo Librandi, <a href="/A017017/b017017.txt">Table of n, a(n) for n = 0..5000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F From _G. C. Greubel_, Oct 17 2023: (Start)

%F G.f.: (3 + 4*x)/(1 - x)^2.

%F E.g.f.: (3 + 7*x)*exp(x). (End)

%p A017017:=n->7*n + 3; seq(A017017(n), n=0..100); # _Wesley Ivan Hurt_, Feb 24 2014

%t Range[3, 600, 7] (* _Vladimir Joseph Stephan Orlovsky_, May 27 2011 *)

%o (Magma) [7*n+3: n in [0..60]]; // _Vincenzo Librandi_, May 28 2011

%o (PARI) a(n)=7*n+3 \\ _Charles R Greathouse IV_, Jul 02 2013

%o (SageMath) [7*n+3 for n in range(80)] # _G. C. Greubel_, Oct 17 2023

%Y Cf. A008589, A016993, A017005.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_