login
A016936
a(n) = (6*n + 2)^4.
9
16, 4096, 38416, 160000, 456976, 1048576, 2085136, 3748096, 6250000, 9834496, 14776336, 21381376, 29986576, 40960000, 54700816, 71639296, 92236816, 116985856, 146410000, 181063936, 221533456, 268435456, 322417936, 384160000, 454371856, 533794816, 623201296
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Aug 22 2012
From Amiram Eldar, Mar 29 2022: (Start)
a(n) = A016933(n)^4 = A016934(n)^2.
a(n) = 16*A016780(n).
Sum_{n>=0} 1/a(n) = PolyGamma(3, 1/3)/7776. (End)
MATHEMATICA
(6*Range[0, 30]+2)^4 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {16, 4096, 38416, 160000, 456976}, 30] (* Harvey P. Dale, Aug 22 2012 *)
PROG
(Magma) [(6*n+2)^4: n in [0..30]]; // Vincenzo Librandi, May 04 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved