login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016910 a(n) = (6n)^2. 7
0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subset of A188158. - Michel Lagneau, Oct 11 2013

Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016

Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1)

FORMULA

From Ilya Gutkovskiy, Jun 09 2016: (Start)

O.g.f.: 36*x*(1 + x)/(1 - x)^3.

E.g.f.: 36*x*(1 + x)*exp(x).

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)

a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017

a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018

MATHEMATICA

(6*Range[0, 40])^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 36, 144}, 40] (* Harvey P. Dale, Dec 25 2017 *)

Table[36 n^2, {n, 0, 45}] (* Omar E. Pol, Jun 07 2018 *)

PROG

(MAGMA) [(6*n)^2: n in [0..40]]; // Vincenzo Librandi, May 03 2011

(PARI) a(n)=36*n^2 \\ Charles R Greathouse IV, Jun 10 2016

CROSSREFS

Cf. A000217, A188158, A243941.

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12),  A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Sequence in context: A138202 A204106 A049227 * A005017 A288488 A262789

Adjacent sequences:  A016907 A016908 A016909 * A016911 A016912 A016913

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:33 EST 2018. Contains 318049 sequences. (Running on oeis4.)