login
A016862
a(n) = (5*n + 1)^2.
14
1, 36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601, 3136, 3721, 4356, 5041, 5776, 6561, 7396, 8281, 9216, 10201, 11236, 12321, 13456, 14641, 15876, 17161, 18496, 19881, 21316, 22801, 24336, 25921
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Polygamma Function.
Wikipedia, Polygamma Function.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Harvey P. Dale, Jul 11 2012
Sum_{n>=0} 1/a(n) = polygamma(1, 1/5)/25 = 1.050695088216... - Amiram Eldar, Oct 02 2020
G.f.: (1 +33*x +16*x^2)/(1-x)^3. - Wesley Ivan Hurt, Oct 02 2020
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A017282(n).
a(2*n+1) = 4*A016886(n).
E.g.f.: (1 + 35*x + 25*x^2)*exp(x). (End)
MATHEMATICA
(5*Range[0, 40]+1)^2 (* or *) LinearRecurrence[{3, -3, 1}, {1, 36, 121}, 40] (* Harvey P. Dale, Jul 11 2012 *)
PROG
(PARI) a(n)=(5*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(5*n+1)^2: n in [0..40]]; // G. C. Greubel, Dec 28 2022
(SageMath) [(5*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
CROSSREFS
Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), A016814 (m=4), this sequence (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).
Sequence in context: A280886 A278022 A333007 * A223506 A238037 A238032
KEYWORD
nonn,easy
STATUS
approved