login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016781 (3*n+1)^5. 3
1, 1024, 16807, 100000, 371293, 1048576, 2476099, 5153632, 9765625, 17210368, 28629151, 45435424, 69343957, 102400000, 147008443, 205962976, 282475249, 380204032, 503284375, 656356768, 844596301 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general the e.g.f. of {(1 + 3*m)^n}_{m>=0} is E(n,x) = exp(x)*Sum_{m=0..n} A282629(n, m)*x^m, and the o.g.f. is G(n, x) = (Sum_{m=0..n} A225117(n, n-m}*x^m)/(1-x)^(n+1). - Wolfdieter Lang, Apr 02 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).

FORMULA

a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6); a(0)=1, a(1)=1024, a(2)=16807, a(3)=100000, a(4)=371293, a(5)=1048576. [Harvey P. Dale, May 13 2012]

From Wolfdieter Lang, Apr 02 2017: (Start)

O.g.f.: (1+1018*x+10678*x^2+14498*x^3+2933*x^4+32*x^5)/(1-x)^6.

E.g.f: exp(x)*(1+1023*x+7380*x^2+8775*x^3+2835*x^4+243*x^5). (End)

a(n) = A000584(A016777(n)). - Michel Marcus, Apr 06 2017

MATHEMATICA

(3Range[0, 20]+1)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1024, 16807, 100000, 371293, 1048576}, 30] (* Harvey P. Dale, May 13 2012 *)

PROG

(MAGMA) [(3*n+1)^5: n in [0..30]]; // Vincenzo Librandi, Sep 21 2011

(Maxima) A016781(n):=(3*n+1)^5$

makelist(A016781(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */

CROSSREFS

Cf. A016777, A016778, A016779, A016780, A225117, A282629.

Sequence in context: A138334 A268124 A205611 * A247933 A205349 A016805

Adjacent sequences:  A016778 A016779 A016780 * A016782 A016783 A016784

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 09:07 EDT 2019. Contains 322472 sequences. (Running on oeis4.)