login
A016775
(3*n)^11.
1
0, 177147, 362797056, 31381059609, 743008370688, 8649755859375, 64268410079232, 350277500542221, 1521681143169024, 5559060566555523, 17714700000000000, 50542106513726817, 131621703842267136, 317475837322472439, 717368321110468608
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From Wesley Ivan Hurt, Oct 28 2014: (Start)
G.f.: 177147*(x + 2036*x^2 + 152637*x^3 + 2203488*x^4 + 9738114*x^5 + 15724248*x^6 + 9738114*x^7 + 2203488*x^8 + 152637*x^9 + 2036*x^10 + x^11) / (x - 1)^12.
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12).
a(n) = (3*n)^11 = 177147 * A008455(n) = A008455(A008585(n)). (End)
MAPLE
A016775:=n->(3*n)^11: seq(A016775(n), n=0..20); # Wesley Ivan Hurt, Oct 28 2014
MATHEMATICA
(3 Range[0, 20])^11 (* or *)
CoefficientList[Series[177147 (x + 2036 x^2 + 152637 x^3 + 2203488 x^4 + 9738114 x^5 + 15724248 x^6 + 9738114 x^7 + 2203488 x^8 + 152637 x^9 + 2036 x^10 + x^11)/(x - 1)^12, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)
PROG
(Magma) [(3*n)^11: n in [0..20]]; // Vincenzo Librandi, May 09 2011
(Maxima) A016775(n):=(3*n)^11$
makelist(A016775(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
Cf. A008455 (11th Powers), A008585 (3n).
Sequence in context: A205276 A321827 A016763 * A016847 A016895 A016955
KEYWORD
nonn,easy
AUTHOR
STATUS
approved