login
A016760
a(n) = (2*n+1)^8.
7
1, 6561, 390625, 5764801, 43046721, 214358881, 815730721, 2562890625, 6975757441, 16983563041, 37822859361, 78310985281, 152587890625, 282429536481, 500246412961, 852891037441, 1406408618241, 2251875390625, 3512479453921, 5352009260481, 7984925229121, 11688200277601
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = A016756(n)^2. - Michel Marcus, Dec 26 2016
G.f.: -(1+6552*x +331612*x^2 +2485288*x^3 +4675014*x^4 +2485288*x^5 +331612*x^6 +6552*x^7 +x^8)/(x-1)^9 . - R. J. Mathar, Jul 07 2017
Sum_{n>=0} 1/a(n) = 17*Pi^8/161280 (A300710). - Amiram Eldar, Oct 11 2020
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(Pi/2)*(cos(Pi/sqrt(2)) + cosh(Pi/sqrt(2)))/32. - Amiram Eldar, Jan 28 2021
MATHEMATICA
Table[(2*n+1)^8, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
PROG
(Magma) [(2*n+1)^8: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
(Maxima) A016760(n):=(2*n+1)^8$
makelist(A016760(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(PARI) vector(30, n, n--; (2*n+1)^8) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
Sequence in context: A017500 A017632 A209510 * A203652 A016772 A059980
KEYWORD
nonn,easy
STATUS
approved