The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016743 Even cubes: a(n) = (2*n)^3. 10
 0, 8, 64, 216, 512, 1000, 1728, 2744, 4096, 5832, 8000, 10648, 13824, 17576, 21952, 27000, 32768, 39304, 46656, 54872, 64000, 74088, 85184, 97336, 110592, 125000, 140608, 157464, 175616, 195112, 216000, 238328, 262144, 287496, 314432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is also the number of non-degenerate triangles that can be drawn with vertices on a cross with n points on each branch. - James P. B. Hall, Nov 22 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (2*n)^3 = 8*n^3. G.f.: x*(8+32*x+8*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012 E.g.f.: 8*x*(1 +3*x +x^2)*exp(x). - G. C. Greubel, Sep 15 2018 From Amiram Eldar, Oct 10 2020: (Start) Sum_{n>=1} 1/a(n) = zeta(3)/8 (A276712). Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/32. (End) MAPLE A016743:=n->(2*n)^3: seq(A016743(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2018 MATHEMATICA Range[0, 78, 2]^3 (* Alonso del Arte, Apr 06 2013 *) PROG (MAGMA) [(2*n)^3: n in [0..50]]; // Vincenzo Librandi, Sep 05 2011 (PARI) a(n) = 8*n^3; \\ Joerg Arndt, Apr 07 2013 CROSSREFS Even bisection of A000578, cf. A016755. Cf. A016803 (even bisection), A016827 (odd bisection), A033581, A276712. Sequence in context: A207113 A207393 A207940 * A340695 A086114 A209651 Adjacent sequences:  A016740 A016741 A016742 * A016744 A016745 A016746 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 19:11 EDT 2021. Contains 343177 sequences. (Running on oeis4.)