A continued fraction expansion for the constant log(16)

Peter Bala, Mar 052024

```
We start with the identity [Borwein et al., p. 495]
    log(1 - z) + z = - (1/2)* z^2 * hypergeom([1, 2], [3], z) ...(1)
Applying Pfaff's transformation [Wikipedia]
    hypergeom([a, b], [c], z)
    = 1/(1 - z)^a * hypergeom([a, c - b], [c], z/(z - 1))
to (1) gives
```

 \(\log (1-z)+z=-(1 / 2) * z^{\wedge} 2 /(1-z) * \operatorname{hypergeom}([1,1],[3]\),
 z/(z-1)).
Setting z = 1/2 gives
$\log (2)-1 / 2=(1 / 4) * \operatorname{hypergeom}([1,1],[3],-1)$.
Hence, by Gauss's continued fraction [Wikipedia or Borwein et al.
Equation 8],

```
log(16) = 2 + 1/(1 + (1*2)/(2*3)/(1 + (1*2)/(3*4)/(1+
(2*3)/(4*5)/(1 + (2*3)/(5*6)/(1 + ... ) ) )) .
```

By means of equivalence transformations this can be put in the
form
$\log (16)=2+1 /(1+1 /(3+(1 * 2) /(4+(2 * 3) /(5+(2 * 3) /(6+$
$(3 * 4) /(7+(3 * 4) /(8+\ldots))))))$.

References

Jonathan Michael Borwein, Kwok-Kwong Stephen Choi, and Wilfried Pigulla, Continued Fractions of Tails of
Hypergeometric Series, Amer. Math, Monthly, Vol. 112, No. 6 (Jun.

- Jul., 2005), pp. 493-501

Wikipedia, Hypergeometric Function

