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We start with the identity [Borwein et al., p. 495]

  log(1 – z) + z = - (1/2)*z^2 * hypergeom([1, 2], [3], z) ...(1)

Applying Pfaff's transformation [Wikipedia]

 hypergeom([a, b], [c], z)

 = 1/(1 - z)^a * hypergeom([a, c - b],  [c], z/(z – 1))

to (1) gives

 log(1 – z) + z = - (1/2)*z^2/(1 – z) * hypergeom([1, 1], [3], 

z/(z – 1)).

Setting z = 1/2 gives

 log(2) – 1/2  = (1/4) * hypergeom([1, 1], [3], -1).

Hence, by Gauss's continued fraction [Wikipedia or Borwein et al. 

Equation 8],

 log(16) = 2 + 1/(1 + (1*2)/(2*3)/(1 + (1*2)/(3*4)/(1 + 

(2*3)/(4*5)/(1 + (2*3)/(5*6)/(1 + ... ))))).

By means of equivalence transformations this can be put in the 

form

 log(16) = 2 + 1/(1 + 1/(3 + (1*2)/(4 + (2*3)/(5 + (2*3)/(6 + 

(3*4)/(7 + (3*4)/(8 + ... ))))))).
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