login
A016307
Expansion of 1/((1-2*x)*(1-6*x)*(1-10*x)).
1
1, 18, 232, 2640, 28336, 295008, 3020032, 30620160, 308720896, 3102325248, 31113951232, 311683706880, 3120102240256, 31220613439488, 312323680632832, 3123942083788800, 31243652502716416, 312461915016265728
OFFSET
0,2
FORMULA
G.f.: 1/((1-2*x)*(1-6*x)*(1-10*x)).
From Vincenzo Librandi, Sep 01 2011: (Start)
a(n) = (2^n - 18*6^n + 25*10^n)/8.
a(n) = 18*a(n-1) - 92*a(n-2) + 120*a(n-3) for n > 2.
a(n) = 16*a(n-1) - 60*a(n-2) + 2^n for n > 1. (End)
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-6x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{18, -92, 120}, {1, 18, 232}, 30] (* Harvey P. Dale, Nov 06 2019 *)
PROG
(Magma) [(2^n-18*6^n+25*10^n)/8: n in [0..20]]; // Vincenzo Librandi, Sep 01 2011
CROSSREFS
Sequence in context: A296941 A016312 A017916 * A193982 A021094 A275963
KEYWORD
nonn,easy
STATUS
approved