login
A016292
Expansion of 1/((1-2x)*(1-4x)*(1-10x)).
2
1, 16, 188, 2000, 20496, 206976, 2077888, 20811520, 208246016, 2082983936, 20831935488, 208327741440, 2083310964736, 20833243856896, 208332975423488, 2083331901685760, 20833327606726656, 208333310426873856, 2083333241707429888, 20833332966829588480
OFFSET
0,2
FORMULA
a(n) = (1/4)*2^n - (4/3)*4^n + (25/12)*10^n. - Antonio Alberto Olivares, May 12 2012
a(n) = 16*a(n-1) - 68*a(n-2) + 80*a(n-3). - Vincenzo Librandi, Jun 26 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 2 x) (1 - 4 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 26 2013 *)
LinearRecurrence[{16, -68, 80}, {1, 16, 188}, 30] (* Harvey P. Dale, Apr 05 2015 *)
PROG
(PARI) Vec(1/((1-2*x)*(1-4*x)*(1-10*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) I:=[1, 16, 188]; [n le 3 select I[n] else 16*Self(n-1)-68*Self(n-2)+80*Self(n-3): n in [1..20]]; /* or */ m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1-4*x)*(1-10*x)))); // Vincenzo Librandi, Jun 26 2013
CROSSREFS
Cf. A021092.
Sequence in context: A067308 A016244 A240361 * A231834 A181277 A181269
KEYWORD
nonn,easy
STATUS
approved