login
Inverse of 2223rd cyclotomic polynomial.
1

%I #19 Jan 30 2019 16:22:03

%S 1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,

%T 0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,1,0,0,-2,0,0,1,0,

%U 0,1,0,0,-2,0,0,1,0,0,1,0,0,-1,0,0

%N Inverse of 2223rd cyclotomic polynomial.

%C Periodic with period length 2223. - _Ray Chandler_, Apr 07 2017

%H Robert Israel, <a href="/A016232/b016232.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_1296">Index entries for linear recurrences with constant coefficients</a>, order 1296.

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%F From _Robert Israel_, Apr 19 2016: (Start)

%F G.f.: 1/C_2223(x), where C_n(x) is the n-th cyclotomic polynomial.

%F a(n) = 0 if n is not divisible by 3.

%F a(3*n) = A014750(n).- (End)

%p with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);

%t CoefficientList[Series[1/Cyclotomic[2223,x],{x,0,120}],x] (* _Harvey P. Dale_, Jan 30 2019 *)

%K sign

%O 0,61

%A _Simon Plouffe_