%I #23 Oct 30 2022 06:55:05
%S 1,17,225,2785,33761,406497,4883425,58622945,703562721,8443102177,
%T 101318624225,1215829083105,14589971366881,175079745881057,
%U 2100957308486625,25211489133495265,302537875328566241
%N Expansion of 1/((1-x)(1-4x)(1-12x)).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17, -64, 48).
%F G.f.: 1/((1-x)*(1-4*x)*(1-12*x)).
%F a(n) = (1/33) - (2/3)*4^(n-1) + (18/11)*12^(n-1). - _Antonio Alberto Olivares_, Feb 07 2010
%F a(0)=1, a(1)=17, a(n) = 16*a(n-1) - 48*a(n-2) + 1. - _Vincenzo Librandi_, Feb 10 2011
%t CoefficientList[Series[1/((1 - x)*(1 - 4*x)*(1 - 12*x)), {x, 0, 20}],
%t x] (* _Wesley Ivan Hurt_, Oct 30 2022 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_