%I #31 Jul 01 2022 06:01:05
%S 1,11,87,607,3983,25263,157039,964079,5871855,35580655,214882031,
%T 1294884591,7791677167,46839541487,281395162863,1689802632943,
%U 10144542420719,60890161016559,365432592068335
%N Expansion of 1/((1-x)(1-4x)(1-6x)).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11, -34, 24).
%F G.f.: 1/((1-x)*(1-4*x)*(1-6*x)).
%F a(n) = (1/15) - (8/3)*4^n + (18/5)*6^n. - _Antonio Alberto Olivares_, Feb 07 2010
%F a(0) = 1, a(1) = 11, a(n) = 10*a(n-1) - 24*a(n-2) + 1. - _Vincenzo Librandi_, Feb 10 2011
%F a(0) = 1, a(1) = 11, a(2) = 87, a(n) = 11*a(n-1) - 34*a(n-2) + 24*a(n-3). - _Harvey P. Dale_, Nov 04 2011
%t CoefficientList[Series[1/((1-x)(1-4x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{11,-34,24},{1,11,87},30] (* _Harvey P. Dale_, Nov 04 2011 *)
%o (PARI) Vec(1/((1-x)*(1-4*x)*(1-6*x)) + O(x^40)) \\ _Michel Marcus_, Sep 04 2017
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_