login
A016222
Expansion of 1/((1-x)(1-4x)(1-6x)).
0
1, 11, 87, 607, 3983, 25263, 157039, 964079, 5871855, 35580655, 214882031, 1294884591, 7791677167, 46839541487, 281395162863, 1689802632943, 10144542420719, 60890161016559, 365432592068335
OFFSET
0,2
FORMULA
G.f.: 1/((1-x)*(1-4*x)*(1-6*x)).
a(n) = (1/15) - (8/3)*4^n + (18/5)*6^n. - Antonio Alberto Olivares, Feb 07 2010
a(0) = 1, a(1) = 11, a(n) = 10*a(n-1) - 24*a(n-2) + 1. - Vincenzo Librandi, Feb 10 2011
a(0) = 1, a(1) = 11, a(2) = 87, a(n) = 11*a(n-1) - 34*a(n-2) + 24*a(n-3). - Harvey P. Dale, Nov 04 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-4x)(1-6x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{11, -34, 24}, {1, 11, 87}, 30] (* Harvey P. Dale, Nov 04 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-4*x)*(1-6*x)) + O(x^40)) \\ Michel Marcus, Sep 04 2017
CROSSREFS
Sequence in context: A277465 A357535 A232078 * A081013 A163616 A224182
KEYWORD
nonn,easy
STATUS
approved