Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #28 Oct 25 2023 10:02:16
%S 1,12,109,912,7417,59700,478693,3832824,30672433,245408988,1963360477,
%T 15707149536,125657993449,1005266339076,8042137887061,64337124619848,
%U 514697061528865,4117576685941164,32940614068660045,263524914292672560,2108199319571557081,16865594572262986452
%N Expansion of g.f. 1/((1-x)*(1-3*x)(1-8*x)).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-35,24).
%F a(n) = 11*a(n-1) - 24*a(n-2) + 1 with a(0) = 1, a(1) = 12. - _Vincenzo Librandi_, Feb 10 2011
%F a(n) = (2*8^(n+2) - 7*3^(n+2) + 5)/70. - _Yahia Kahloune_, May 19 2013
%F E.g.f.: exp(x)*(5 - 63*exp(2*x) + 128*exp(7*x))/70. - _Stefano Spezia_, Oct 25 2023
%p a:=n->sum((8^(n-j+1)-3^(n-j+1))/5,j=0..n+1): seq(a(n), n=0..19); # _Zerinvary Lajos_, Jan 15 2007
%t CoefficientList[Series[1/((1-x)*(1-3*x)(1-8*x)),{x,0,21}],x] (* _Stefano Spezia_, Oct 25 2023 *)
%Y Cf. A000244, A001018.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_
%E a(19)-a(21) from _Stefano Spezia_, Oct 25 2023