login
Expansion of 1/((1-6*x)*(1-11*x)).
3

%I #25 Nov 13 2024 17:01:54

%S 1,17,223,2669,30655,344981,3841447,42535853,469573999,5175391685,

%T 56989774711,627250318877,6901930289983,75934293883829,

%U 835355596886215,9189381750732941,101086020367969807,1111963150707112613,12231696217734907159,134549267754823989245,1480045601461503944671,16280523553027183769237

%N Expansion of 1/((1-6*x)*(1-11*x)).

%H G. C. Greubel, <a href="/A016174/b016174.txt">Table of n, a(n) for n = 0..955</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,-66).

%F a(n) = (11^(n+1) - 6^(n+1))/5. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005

%F a(n) = 11*a(n-1) + 6^n, a(0)=1. - _Vincenzo Librandi_, Feb 09 2011

%F E.g.f.: (1/5)*(11*exp(11*x) - 6*exp(6*x)). - _G. C. Greubel_, Nov 13 2024

%p A016174:=n->(11^(n + 1) - 6^(n + 1))/5; seq(A016174(n), n=0..30); # _Wesley Ivan Hurt_, Jan 30 2014

%t Table[(11^(n+1) -6^(n+1))/5, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2011 *)

%t LinearRecurrence[{17, -66}, {1, 17}, 41] (* _G. C. Greubel_, Nov 13 2024 *)

%o (PARI) Vec(1/((1-6*x)*(1-11*x))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Magma) [(11^(n+1) - 6^(n+1))/5: n in [0..40]]; // _G. C. Greubel_, Nov 13 2024

%o (SageMath)

%o A016174=BinaryRecurrenceSequence(17,-66,1,17)

%o print([A016174(n) for n in range(41)]) # _G. C. Greubel_, Nov 13 2024

%Y Cf. A016129.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms added by _G. C. Greubel_, Nov 13 2024