login
A016174
Expansion of 1/((1-6*x)*(1-11*x)).
3
1, 17, 223, 2669, 30655, 344981, 3841447, 42535853, 469573999, 5175391685, 56989774711, 627250318877, 6901930289983, 75934293883829, 835355596886215, 9189381750732941, 101086020367969807, 1111963150707112613, 12231696217734907159, 134549267754823989245, 1480045601461503944671, 16280523553027183769237
OFFSET
0,2
FORMULA
a(n) = (11^(n+1) - 6^(n+1))/5. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005
a(n) = 11*a(n-1) + 6^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
E.g.f.: (1/5)*(11*exp(11*x) - 6*exp(6*x)). - G. C. Greubel, Nov 13 2024
MAPLE
A016174:=n->(11^(n + 1) - 6^(n + 1))/5; seq(A016174(n), n=0..30); # Wesley Ivan Hurt, Jan 30 2014
MATHEMATICA
Table[(11^(n+1) -6^(n+1))/5, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
LinearRecurrence[{17, -66}, {1, 17}, 41] (* G. C. Greubel, Nov 13 2024 *)
PROG
(PARI) Vec(1/((1-6*x)*(1-11*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) [(11^(n+1) - 6^(n+1))/5: n in [0..40]]; // G. C. Greubel, Nov 13 2024
(SageMath)
A016174=BinaryRecurrenceSequence(17, -66, 1, 17)
print([A016174(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
CROSSREFS
Cf. A016129.
Sequence in context: A016181 A285233 A063043 * A016281 A160398 A181380
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms added by G. C. Greubel, Nov 13 2024
STATUS
approved