%I #19 Jan 09 2018 03:00:59
%S 1,15,181,2055,22861,252495,2781541,30613335,336812221,3705196575,
%T 40758210901,448344514215,4931806433581,54249937878255,
%U 596749585096261,6564246509800695,72206715902774941,794273892110393535
%N Expansion of 1/((1-4*x)(1-11*x)).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-44).
%F a(n) = 15*a(n-1) - 44*a(n-2) for n >= 2. - _Vincenzo Librandi_, Mar 18 2011
%F a(n) = 11*a(n-1) + 4^n for n >= 1. - _Vincenzo Librandi_, Mar 18 2011
%F a(n) = (11^(n+1) - 2^(2*n+2))/7. - _R. J. Mathar_, Mar 20 2011
%p A016158:=n->(11^(n+1)-2^(2*n+2))/7: seq(A016158(n), n=0..30); # _Wesley Ivan Hurt_, Apr 23 2017
%t Join[{a=1,b=15},Table[c=15*b-44*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 01 2011 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_