login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016103 Expansion of 1/((1-4x)(1-5x)(1-6x)). 4
1, 15, 151, 1275, 9751, 70035, 481951, 3216795, 20991751, 134667555, 852639151, 5343198315, 33212784151, 205111785075, 1260114546751, 7708980203835, 46999640806951, 285743822630595, 1733261544204751 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

2*a(n-2) = 6^n - 2*5^n + 4^n is the number of 3 X n {0,1}-matrices such that: (a) first and second row have a common 1, (b) first and third row have a common 1, (c) second and third row have no common 1. - Andi Fugard and Vladeta Jovovic, Jul 26 2008

This is the third column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See A193685 for general comments. - Wolfdieter Lang, Oct 08 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Andi Fugard, Counting first-order models (with n individuals) of syllogisms.

Index entries for linear recurrences with constant coefficients, signature (15,-74,120).

FORMULA

a(n) = 2^(3 + 2*n) + 2^(1 + n) * 3^(2 + n) - 5^(2 + n). - Andi Fugard, Jul 22 2008

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,4), n >= 2. - Milan Janjic, Apr 26 2009

O.g.f.: 1/((1-4*x)*(1-5*x)*(1-6*x)).

E.g.f.: (d^2/dx^2)(exp(4*x)*((exp(x)-1)^2)/2!). See the Sheffer triangle comment above. - Wolfdieter Lang, Oct 08 2011

a(n) = 15*a(n-1) - 74*a(n-2) + 120*a(n-3). - Vincenzo Librandi, Jun 24 2013

MATHEMATICA

CoefficientList[Series[1 / ((1 - 4 x) (1 - 5 x) (1 - 6 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)

PROG

(PARI) Vec(1/((1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-5*x)*(1-6*x)))); /* or */ I:=[1, 15, 151]; [n le 3 select I[n] else 15*Self(n-1)-74*Self(n-2)+120*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013

CROSSREFS

Cf. A051588, A000302, A005060, A003468.

Sequence in context: A021364 A323298 A206366 * A206361 A041424 A021124

Adjacent sequences:  A016100 A016101 A016102 * A016104 A016105 A016106

KEYWORD

nonn,easy

AUTHOR

Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:44 EST 2020. Contains 338943 sequences. (Running on oeis4.)