%I #23 Feb 08 2024 03:09:50
%S 1,42,1105,23310,431221,7309722,116419465,1769717670,25948716541,
%T 369730963602,5147200519825,70298695224030,944897655707461,
%U 12530341519244682,164265473257148185,2132247784185258390
%N Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)*(1-12*x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (42,-659,4578,-11880)
%F If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,9), n >= 3. - _Milan Janjic_, Apr 26 2009
%F a(n) = 42*a(n-1) - 659*a(n-2) + 4578*a(n-3) - 11880*a(n-4), n >= 4. - _Vincenzo Librandi_, Mar 18 2011
%F a(n) = 23*a(n-1) - 132*a(n-2) + 10^(n+1) - 9^(n+1), n >= 2. - _Vincenzo Librandi_, Mar 18 2011
%F a(n) = 5*10^(n+2) + 2*12^(n+2) - 11^(n+3)/2 - 3*9^(n+2)/2. - _R. J. Mathar_, Mar 19 2011
%t CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) ,{x,0,20}],x] (* or *) LinearRecurrence[{42,-659,4578,-11880},{1,42,1105,23310},20] (* _Harvey P. Dale_, Dec 14 2021 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_