

A015938


Smallest k>2^n such that 2^k == 2^n (mod k).


1



3, 6, 9, 20, 56, 66, 133, 260, 513, 1030, 2091, 4128, 8593, 16394, 33195, 65584, 131345, 262176, 524989, 1048660, 2097291, 4195642, 8388997, 16777272, 33554525, 67109198, 134217729, 268435468, 536875753, 1073741910
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..30.


EXAMPLE

For n=3, 2^3=8, and k=9 works, since 2^9 = 512 == 8 (mod 9).


MATHEMATICA

f[n_] := Block[{k = 2^n + 1}, While[ PowerMod[2, k, k] != PowerMod[2, n, k], k++]; k]; Array[f, 30] (* Robert G. Wilson v, Aug 01 2011 *)


CROSSREFS

Cf. A015939.
Sequence in context: A223504 A322949 A285215 * A116614 A089001 A215666
Adjacent sequences: A015935 A015936 A015937 * A015939 A015940 A015941


KEYWORD

nonn


AUTHOR

Robert G. Wilson v


EXTENSIONS

Constraint on k added to the definition by R. J. Mathar, Aug 01 2011


STATUS

approved



