The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015938 Smallest k>2^n such that 2^k == 2^n (mod k). 1
 3, 6, 9, 20, 56, 66, 133, 260, 513, 1030, 2091, 4128, 8593, 16394, 33195, 65584, 131345, 262176, 524989, 1048660, 2097291, 4195642, 8388997, 16777272, 33554525, 67109198, 134217729, 268435468, 536875753, 1073741910 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE For n=3, 2^3=8, and k=9 works, since 2^9 = 512 == 8 (mod 9). MATHEMATICA f[n_] := Block[{k = 2^n + 1}, While[ PowerMod[2, k, k] != PowerMod[2, n, k], k++]; k]; Array[f, 30] (* Robert G. Wilson v, Aug 01 2011 *) CROSSREFS Cf. A015939. Sequence in context: A223504 A322949 A285215 * A116614 A089001 A215666 Adjacent sequences: A015935 A015936 A015937 * A015939 A015940 A015941 KEYWORD nonn AUTHOR EXTENSIONS Constraint on k added to the definition by R. J. Mathar, Aug 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 01:28 EST 2023. Contains 360091 sequences. (Running on oeis4.)