login
A015935
Positive integers n such that 2^n == 2^11 (mod n).
10
1, 2, 3, 4, 8, 11, 14, 15, 16, 31, 32, 35, 51, 56, 64, 121, 128, 146, 224, 256, 341, 451, 455, 496, 508, 512, 671, 781, 896, 1024, 1111, 1235, 1271, 1441, 1547, 1661, 1736, 1991, 2048, 2091, 2101, 2321, 2651, 2761, 2981, 3091, 3421, 3584, 3641, 3731, 3751, 4064, 4088, 4403, 4411, 4631, 4741, 5071, 5401, 5731, 5951, 6171, 6191, 6281, 6386, 6611, 6851, 6941, 7051, 7271, 7601, 7711, 7936, 8261, 8371, 8435, 8456, 8921
OFFSET
1,2
COMMENTS
For all m, 2^A128124(m)-1 belongs to this sequence.
LINKS
OEIS Wiki, 2^n mod n
MATHEMATICA
m = 2^11; Join[Select[Range[m], Divisible[2^# - m, #] &],
Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
PROG
(PARI) isok(n) = Mod(2, n)^n == Mod(2, n)^11; \\ Michel Marcus, Oct 08 2018
CROSSREFS
The odd terms form A276971.
Sequence in context: A050727 A295323 A102951 * A135909 A046812 A269797
KEYWORD
nonn
EXTENSIONS
Edited by Max Alekseyev, Jul 30 2011
STATUS
approved