|
|
A015876
|
|
Numbers k such that sigma(k) = sigma(k+8).
|
|
15
|
|
|
15, 69, 87, 102, 132, 175, 230, 638, 689, 1127, 1349, 1392, 2006, 5170, 6680, 8366, 8390, 11652, 11918, 12128, 16748, 19511, 19829, 23318, 24597, 24734, 25122, 27162, 28676, 30730, 32864, 37391, 37436, 37901, 41082, 45925, 47487
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Donovan Johnson, Table of n, a(n) for n = 1..1000
A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
|
|
MAPLE
|
A015876:=proc(q) local n;
for n from 1 to q do if sigma(n+8)=sigma(n) then print(n); fi; od; end:
A015876(10^10); # Paolo P. Lava, Mar 25 2013
|
|
MATHEMATICA
|
Select[Range[50000], DivisorSigma[1, #]==DivisorSigma[1, # + 8] &] (* Vincenzo Librandi, Mar 10 2014 *)
|
|
PROG
|
(PARI) is(n)=sigma(n)==sigma(n+8) \\ Charles R Greathouse IV, Mar 09 2014
|
|
CROSSREFS
|
Cf. A002961, A007373, A015861, A015863, A015865, A015866, A015867, A015877, A015880, A015881, A015882, A015883, A181647.
Sequence in context: A265141 A336624 A211917 * A201126 A085474 A212109
Adjacent sequences: A015873 A015874 A015875 * A015877 A015878 A015879
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v
|
|
STATUS
|
approved
|
|
|
|