|
|
A015865
|
|
Numbers k such that sigma(k) = sigma(k + 5).
|
|
16
|
|
|
6, 46, 1030, 2673, 4738, 4785, 10437, 14025, 20038, 20326, 23914, 28702, 31101, 39273, 39669, 41349, 41554, 44709, 46366, 55918, 68638, 74205, 93682, 94365, 96790, 103678, 115245, 115642, 124785, 169990, 182830, 185073, 207118, 214090
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Using the method proposed by Guy and Shanks to construct solutions of sigma(k) = sigma(k + 1), it is possible to search for large terms of this sequence: If q = 3^(m+1) + 8 and p = (3^m*q - 5)/2 are primes, then 2*p is a term. This occurs for m = 0, 1 and 4, giving the terms 6, 46 and 20326. If q = 3^(m+1) - 22 and p = (3^m*q + 5)/2 are primes, then 3^m*q is a term. This occurs for m = 45 giving the term 26183890704263137277609197558886063678754201. In both cases there are no other solutions for m <= 10^4. - Amiram Eldar, May 29 2020
|
|
LINKS
|
Donovan Johnson, Table of n, a(n) for n = 1..1000
Richard Guy and Daniel Shanks, A Constructed Solution of sigma(n) = sigma(n+1), The Fibonacci Quarterly, Vol. 12, No. 3 (1974), p. 299.
|
|
MAPLE
|
A015865:=proc(q) local n;
for n from 1 to q do if sigma(n+5)=sigma(n) then print(n); fi; od; end:
A015865 (10^10); # Paolo P. Lava, Mar 25 2013
|
|
MATHEMATICA
|
Select[Range[215000], DivisorSigma[1, #]==DivisorSigma[1, # + 5] &] (* Vincenzo Librandi, Mar 10 2014 *)
|
|
PROG
|
(PARI) is(n)=sigma(n)==sigma(n+5) \\ Charles R Greathouse IV, Mar 09 2014
|
|
CROSSREFS
|
Cf. A000203, A002961, A007373, A015861, A015863, A015866, A015867, A015876, A015877, A015880, A015881, A015882, A015883, A181647.
Sequence in context: A275031 A094655 A327364 * A276271 A145506 A256160
Adjacent sequences: A015862 A015863 A015864 * A015866 A015867 A015868
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v
|
|
EXTENSIONS
|
Corrected and extended by T. D. Noe, Oct 31 2006
|
|
STATUS
|
approved
|
|
|
|