OFFSET
1,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 14 2020
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/120 - Sum_{j=2..n} a(floor(n/j)) = A000389(n+4) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Apr 18 2021
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A015650(n):
if n == 0:
return 0
c, j = n+1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A015650(k1)
j, k1 = j2, n//j2
return n*(n+1)*(n+2)*(n+3)*(n+4)//120-c+j # Chai Wah Wu, Apr 18 2021
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+3, 4))); \\ Seiichi Manyama, Jun 12 2021
(PARI) a(n) = binomial(n+4, 5)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^5)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved