login
a(n) = 9*a(n-1) + 5*a(n-2).
3

%I #40 Dec 30 2023 23:41:46

%S 0,1,9,86,819,7801,74304,707741,6741189,64209406,611590599,5825362421,

%T 55486214784,528502745161,5033955780369,47948115749126,

%U 456702820643979,4350065964541441,41434107784092864,394657299879542981,3759086237836351149,35805062639924875246

%N a(n) = 9*a(n-1) + 5*a(n-2).

%C A linear 2nd-order recurrence.

%H Vincenzo Librandi, <a href="/A015581/b015581.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,5).

%F G.f.: x/(1 - 9*x - 5*x^2). - _R. J. Mathar_, Dec 02 2007

%t Join[{a=0,b=1},Table[c=9*b+5*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2011 *)

%t LinearRecurrence[{9, 5}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 15 2012 *)

%o (Sage) [lucas_number1(n,9,-5) for n in range(0, 19)] # _Zerinvary Lajos_, Apr 26 2009

%o (Magma) [n le 2 select n-1 else 9*Self(n-1) + 5*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2012

%o (PARI) x='x+O('x^30); concat([0], Vec(x/(1-9*x-5*x^2))) \\ _G. C. Greubel_, Jan 06 2018

%Y Cf. A015579, A099371.

%K nonn,easy

%O 0,3

%A _Olivier GĂ©rard_

%E Extended by _T. D. Noe_, May 23 2011